搜索

x

Mycielski图的一般邻点可区别全色数

General Adjacent Vertex-distinguishing Total Coloring Chromatic Number of Mycielski Graphs

  • 摘要: 设图G(VE)是阶数至少为2的简单连通图,k是正整数.从VE到1, 2, …, k的映射f称为图G的一般邻点可区别全染色(简记k-GAVDTC),如果对任意2个相邻顶点uv的色集合C(u)≠C(v),其中C(u)=f(u)∪f(uv)|uvE(G),并称χgat(G)=mink|G有k-GAVDTC为图G一般邻点可区别全色数.综合运用构造法、调整法及概率法讨论了路、圈、扇、星、轮和完全二部图的Mycielski图的一般邻点可区别全染色,给出了其确切的一般邻点可区别全色数.

     

    Abstract: In the report, let G(VE) be a simple connect graph with order at least 2 and k be a positive integer. Mapping f from VE to 1, 2, …, k was named a general adjacent vertex distinguishing total coloring of G, or k-GAVDTC, if ∀uvE(G), C(u)≠C(v), in which C(u)=f(u)∪f(uv)|uvE(G). The number χgat(G)=mink|k- GAVDTC of G is named the general adjacent vertex distinguishing total chromatic number of G. The combination of structural method, adjustment method and probability method, were used to discuss the general adjacent vertex distinguishing total coloring of Mycielski graphs of some particular graphs such as path, cycle, fan, star, wheel and complete bipartite graph. And the general adjacent vertex distinguishing total chromatic number of them was confirmed.

     

/

返回文章
返回