丢番图方程x3+1=PQy2的整数解
Integer Solution of the Diophantine Equation x3+1=PQy2
-
摘要: 利用同余式、递归序列、勒让德符号、Pell方程的解的性质证明了p≡19(mod 24)为奇素数,q=73,97,241,337,409,\left (\fracpq\right)=-1时,丢番图方程x3+1=PQy2仅有整数解(x,y)=(-1,0).Abstract: In our report,congruence,recurrent sequence,Legendre symbol,and some properties of the solutions to Pell equation were used to prove that the Diophantine equation x3+1=PQy2 only has integer solution (x,y)=(1,0),when p is odd prime with p≡19(mod 24),q=73,97,241,337,409,and \left(\fracpq\right)=-1