搜索

x

无限维复向量空间上代数线性变换的根

The roots of algebraic linear transformations on infinite dimensional complex vector spaces

  • 摘要:F是一个域,VF上的一个向量空间,\alpha V上的一个线性变换,m是一个大于1的正整数。若V上的线性变换\chi 满足\chi ^m = \alpha ,则称\chi \alpha 的一个m次根。借助主理想整环上有界模的Prüfer-Baer定理,研究无限维复向量空间上代数线性变换,给出了\alpha 的一个m次根可表示为\alpha 的多项式的局部条件和整体条件,所得结果深化了矩阵分析里的相关内容。

     

    Abstract: Let F be a field, V is a vector space on F, \alpha is a linear transformation on V and m is a positive integer greater than 1. If a linear transformation \chi on V satisfies \chi ^m = \alpha , then \chi is called an m-th root of \alpha . In this paper, using the Prüfer-Baer theorem of bounded modules over the principal ideal domain, we study the linear transformation which is algebraically on infinite dimensional complex vector spaces, and give the local and global conditions under which an m-th root of \alpha can be expressed as a polynomial in \alpha . The obtained results deepen the related results in the matrix analysis.

     

/

返回文章
返回