搜索

x

矩阵的追迹与范数(一)

THE TRACE AND THE MODULUS OF A MATRIX. I.

  • 摘要: 本文是笔者的续作,目的是建立矩阵上追迹与范数两个重要概念之间新的关系式及其应用。一、矩阵简史与概念矩阵在中国具有悠久的历史。古典数学名著《九章算术》的现传本约为公元一世纪的作品,该书“方程”一章中,不仅用算筹把

     

    Abstract: This paper is a continuation of my paper〔1〕.
    Let A= (aij be a sguare marix of order n and λ1, λ2, …λn its characterstic roots. We define the trace \textt_\textr \textA=\sum\limits_1-1^\textn \texta_\texti j and the modusus. \|\textA\|=\left(\sum\limits_\texti, j=1^\textn\left|\texta_\texti j\right|^2\right)^\frac12 In the present paper We shall prove the theorem as follows: \;\;\;\;\;\;\;\;\;\;\;\;\textt_\textr \textA^2 \textK=\left\|\frac\textA^\textK+\textA^\textK*2\right\|^2-\| \frac\textA^\textK-\textA^\textK*2 \texti \\ +\frac\texti2\left(\left\|\frac\textA^\textK+\textA^\textK*2+\frac\textA^\textK-\textA^\textk*2 \texti\right\|^2-\left\|\frac\textA^\textk+\textA^\textk*2-\frac\textA^\textk-\textA^\textk *2 \texti\right\|^2\right) Where A* is the conjugate of the transpose of A and K may assume any in tegral value.

     

/

返回文章
返回